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1. GENERAL TOPOLOGY

1.1. Axioms of separation.

To, Ty, and Ts (or Hausdorff) spaces
T35 (or regular) spaces

T5.5 (or completely regular) spaces
T, (or normal) spaces

Non-trivial examples:

a Hausdorff space which is not regular.[E, 1.5.6]

a regular, not completely regular space [E, 1.5.9].

a regular, not completely Hausdorff space, [W, 18G]
Sorgenfrei line [E, 1.2.2].

Niemytzki plane, [E, 1.2.4], [E, 1.5.10].

— (Urysohn’s Lemma).] For every pair A,B of disjoint closed subsets of a
normal space X there exists a continuous function f : X — I such that
f(z)=0for x € A and f(x) =1 for z € B. [E, 1.5.11.].

— Every regular space of countable weight is normal. [E, 1.5.16.].

A topological space X is called a hereditarily normal space, (Ts ) if every subspace
of X is a normal space.
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A topological space X is called a perfectly normal space, (Tg) if X is a normal
space and every closed subset of X is a Gs-set.
Results:
— A subset S of a normal space X is a closed Gs-set if and only if there exists
a continuous function f: X — I such that A = f=1(0). [E, 1.5.12. ].
— For every point-finite open cover {Us : s € S} of a normal space X there
exists an open cover {V; : s € S} of X such that V, C Uy for every s € S.
[E, 1.5.18]
— The Vedenissoff Theorem. [E, 1.5.19.]
o Let FF =(2,3).
e The Alexandroff cube of weight m > w is F'™.
e The Tychonoff cube of weight m > w is the space I™.

— The Alexandroff cube F™ is universal for all Ty-spaces of weight m > w.
[E, 2.3.26.]

— The Tychonoff cube is universal for all Tychonoff spaces of weight m > w.
[E, 2.3.23]

1.2. Basic cardinal functions.
Definitions:
e the weight of a space, w(X)
e the character of a space, x(X)
e the density of a space, d(X)
Results:
— If w(X) < m, then for every family U of open subsets of X there exists a
set U’ such that || < m and JU' = JU. [E, 1.1.14]
— If w(X) < m then for every base B for X there exists a base B/ C B such
that |B'| < m. [E, 1.1.15]
Inequalities:

— For every Ty-space we have |X| < 2v(X) [E, 1.5.1.]
2d(X)

— For every Hausdorff space X we have | X| < 2 and |X| < d(X)X(X) [E,
1.5.3]

— For every regular space X we have w(X) < 24X) [E, 1.5.7.]

1.3. Operation on topological spaces.

— Any subspace of a T;-space is a T;-space for i < 3.5. Normality is hereditary
with respect to closed subsets. Perfect normality is a hereditary property.
[E, 2.1.6.]

— (The Tietze-Urysohn Theorem). Every continuous function from a closed
subspace M of a normal space X to I or R is continuously extendable over
X. [E, 2.1.8]

— No separable normal space contains a closed discrete subspace of cardinality
continuum. [E, 2.1.10. |

— Any Cartesian product of T;-spaces is a T;-space for ¢ < 3.5. [E, 2.3.11.]

— The Sorgenfrey line K is perfectly normal, so that K is hereditarily normal
as well. It turns out that the Cartesian product K x K is not normal. [E,
2.3.12]

— (The Hewitt-Marczewski-Pondiczery Theorem.) If d(Xg) < m for every

s€ Sand [S| < 2™, then d([[,cg Xs) <m. [E, 2.3.15. ]
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— A countable space with character > w at all points. [E, 2.3.37. ]

e Quotient space,
e limit of inverse systems

1.4. Compact spaces.

A Hausdorff space X is compact if and only if every family of closed subsets of
X which has the finite intersection property has non-empty intersection.

[E, 3.1.1. ]
Every compact space is normal. [E, 3.1.9.]
For every compact space X we have nw(X) = w(X). [E, 3.1.19. ]
For every compact space X we have w(X) < |X]|. [E, 3.1.21.]
If a compact space Y is a continuous image of a topological space X, then w(Y) <
w(X). [E, 3.1.22]]
Arhangelskii. For every infinite compact space X we have |X| < 2x(X) [E,
3.1.29.]
(Alexander Subbase Theorem [1939]). Let X be a Hausdorff space and P a
subbase for X; show that the space X is compact if and only if every cover of X
by members of P has a finite subcover (this is the Alexander subbase theorem).
[E, 3.12.2 ]
The Tychonoff Theorem. The Cartesian product of compact spaces is compact.
[E, 3.2.4
The Stone-Weierstrass Theorem. If a ring P of continuous real-valued functions
defined on a compact space X contains all constant functions, separates points
and is closed with respect to uniform convergence (i.e., is a closed subset of the
space Rx with the topology of uniform convergence), then P coincides with the
ring of all continuous real-valued functions defined on X. [E, 3.2.21.]

e locally compact spaces
o the Alexandroff double circle. [E, 3.1.26.]
e w +1[E, 3.1.27]

A pair (Y,c), where Y is a compact space and ¢ : X — Y is a homeomorphic
embedding of X in Y such that ¢(X) =Y, is called a compactification of the
space X.

A topological space X has a compactification if and only if X is a Tychonoff space.
[E, 3.5.1. ]

Every Tychonoff space X has a compactification (Y,c) such that w(Y) = w(X).
E, 3.5.2. ]

For every compactification Y of a space X we have |Y| < 22" and w(Y) < 24X
[E, 3.5.3]

We shall now define an order relation in the family C(X). Let co X < ¢; X if there
exists a continuous mapping f : c; X — c2 X such that fc; = co;

For every Tychonoff space X there exists in C(X) a largest element with respect
to the order <. [E, 3.5.10.]

The largest element in C(X) is called the Cech-Stone compactification of X or
the maximal compactification of X and is denoted by SX;
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The Alexandroff Compactification Theorem. Every non-compact locally compact
space X has a compactification uX with one-point remainder. This compactifi-
cation is the smallest element in C(X) with respect to the order j, its weight is
equal to the weight of the space X. [E, 3.5.11. ]

If a compact space Y is a continuous image of the remainder ¢X \ ¢(X) of a
compactification cX of a locally compact space X, then the space X has a com-
pactification ¢/X < ¢X with the remainder homeomorphic to the space Y. [E,
3.5.13. ]

Every continuous mapping f : X — Z of a Tychonoff space X to a compact
space Z is extendable to a continuous mapping F': X — Z. If every continuous
mapping of a Tychonoff space X to a compact space is continuously extend-
able over a compactification aX of X, then aX is equivalent to the Cech-Stone
compactification of X. [E, 3.6.1. ]

For every m > w the Cech-Stone compactification of the space D(m) has cardi-
nality 22" and weight 2. [E, 3.6.11. |

Every infinite closed set F' C BN contains a subset homeomorphic to SN; in
particular F' has cardinality 22° and weight 2¢. BN does not contain convergent
sequences. [E, 3.6.14. ]

We say that a topological space X is a Lindelof space, or has the Lindelof prop-
erty, if X is regular and every open cover of X has a countable subcover.

Every Lindelof space is normal.[E, 3.8.2]

A topological space X is called a countably compact space if X is a Hausdorff
space and every countable open cover of X has a finite subcover.

A topological space is compact if and only if it is a countably compact space with
the Lindelof property. [E, 3.10.1.]

There are two countably compact Tychonoff spaces X and Y such that the Carte-
sian product X x Y is not countably compact. They are subspaces of BN satis-
fying the conditions X UY = SN and X NY = N. [E, 3.10.19. ]

A topological space X is called pseudocompact if X is a Tychonoff space and
every continuous real-valued function defined on X is bounded.

A topological space X is called sequentially compact if X is a Hausdorff space
and every sequence of points of X has a convergent subsequence.

The Cartesian product of a countably compact space X and a sequentially com-
pact space Y is countably compact. [E, 3.10.36.)

1.5. Metric spaces.

Every compact metrizable space is separable. [E, 4.1.18.]
The Hilbert cube I is universal for all compact metrizable spaces and for all
separable metrizable spaces. [E, 4.2.10]

A family {A;} e of subsets of a topological space X is locally finite if for every
point ¢ € X there exists a neighbourhood U such that the set {t € T : UnNA; #
(@} is finite. If every point € X has a neighbourhood that intersects at most
one set of a given family, than we say that the family is discrete.

A family of subsets of a topological space is called o-locally finite (o-discrete) if
it can be represented as a countable union of locally finite (discrete) families.

The Stone Theorem. Every open cover of a metrizable space has an open refine-
ment which is both locally finite and o-discrete. [E, 4.4.1. |
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Every metrizable space has a o-discrete base.[E, 4.4.3.]

The Nagata-Smirnov Metrization Theorem. A topological space is metrizable if
and only if it is regular and has a o-locally finite base.[E, 4.4.7.]

The Bing Metrization Theorem. A topological space is metrizable if and only if
it is regular and has a o-discrete base.[E, 4.4.8.]

The Cartesian product [J(m)]“ of w copies of the hedgehog J(m) is universal for
all metrizable spaces of weight m > w [E, 4.4.9.]

1.6. Paracompactness.

A topological space X is called a paracompact space if X is a Hausdorff space
and every open cover of X has a locally finite open refinement.

A topological space X is called collectionwise normal if X is a Tj-space and for
every discrete family {Fi}ses of closed subsets of X there exists a discrete family
{Vs}ses of open subsets of X such that Fs C V; for every s € S.

Every compact space is paracompact.[E, 5.1.1. ]

Every Lindelof space is paracompact.[E, 5.1.2. |

Every metrizable space is paracompact.[E, 5.1.3. ]

Every paracompact space is normal. [E, 5.1.5. ]

Every paracompact space is collectionwise normal.[E, 5.1.18. ]

w1 is not paracompact. Since it is countably compact and normal, it is collec-
tionwise normal.[E, 5.1.21.]

The Michael Theorem. Paracompactness is an invariant of closed mappings. [E,
5.1.33. ]

Let M be a subspace of a topological space X. One easily checks that the family
of all sets of the form U U K, where U is an open subset of X and K C X \ M, is
a topology on X; the set X with this new topology will be denoted by X M. [E,
5.1.22.]

Michael’S Example. Denote by Q and P the subspaces of R consisting of all
rational and all irrational numbers respectively. By virtue of Example 5.1.22 the
space X = Rg is hereditarily paracompact (the space X is called the Michael
line). We shall prove that the Cartesian product X x Y, where Y = P, is not
normal.[E, 5.1.32. ]

countably paracompact spaces

A topological space X is normal and countably paracompact if and only if the
Cartesian product X x I of X and the closed unit interval I is normal. [E, 5.2.8.

]

A Dowker space is a normal space X such that X x I is not normal.

A sequence W1, W, ... of covers of a topological space X is called a development
for the space X if all covers W; are open, and for every point x£ € X and any
neighbourhood U of x there exists a natural number ¢ such that St(x, WI) C U.
A sequence Wy, W, ... of covers of a topological space X is called a strong devel-
opment for the space X if all covers W; are open, and for every point £ € X and
any neighbourhood U of x there exists a natural number i and a neighbourhood
V of X such that St(V,WI)CU.

Bing’S Metrization Criterion. A topological space is metrizable if and only if it
is collectionwise normal and has a development.[E, 5.4.1.]

The Moore Metrization Theorem. A topological space is metrizable if and only
if it is a Tp-space and has a strong development.[E, 5.4.2. ]
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1.7. Connected spaces.

2.

We say that a topological space X is connected if X cannot be represented in the
form X1 & X2, where X1 and X2 are non-empty subspaces of X.

The quasi-component of a point x in a topological space X is the intersection of
all closed- and-open subsets of X which contain the point x.

The component of a point x in a topological space X is the union of all connected
subspaces of X which contain the point x.

A topological space X is called a continuum if X is both connected and compact.

The intersection ﬂiew C; of a decreasing sequence C; D C5 D ... of continua is a
continuum. [E, 6.1.19.]

The component C of a point x in a topological space X is contained in the quasi-
component Q of the point x. [E, 6.1.22.]

In a compact space X the component of a point x S X coincides with the quasi-
component of the point x. [E, 6.1.23.]

There is a subspace of R? in which components and quasi-components are differ-
ent from each other. [E, 6.1.24. . ]

The Sierpinski Theorem. If a continuum X has a countable cover by pair- wise
disjoint closed subsets {X;}ic., then at most one of the sets X; is non-empty.
[E, 6.1.27.]

A topological space X is called hereditarily disconnected if X does not contain
any connected subsets of cardinality larger than one.

A topological space X is called zero-dimensional if X is a non-empty T;-space
and has a base consisting of open-and-closed sets.

A topological space X is called extremally disconnected if X is a Hausdorff space
and for every open set U C X the closure U is open in X.

Every zero-dimensional space is hereditarily disconnected. [E, 6.2.1]

Erdés’s Example. a hereditarily disconnected separable metric space which is
not zero-dimensional . Let X be the subspace of Hilbert space 77, defined in [E,
Example 4.1.7] counsisting of all infinite sequence of rational numbers. The space
X is hereditarily disconnected. [E, 6.2.19.]

The space SN is extremally disconnected. [E, 6.2.29]

2. SET THEORETIC TOPOLOGY

1. Cardinal functions.

e width d(X), character x(X), density d(X), net-weight nw(X), pseudo-
character ¥ (X), tightness t(X), Lindelof degree L(X), spread s(X), extent
e(X), cellularity ¢(X), hereditary Lindelof degree h(X), hereditary density
z(X), number of open sets, number or regular open sets,

Basic results: Assume that X is T5.

deGroot: |X| < 2MX).
Hajnal-Juhasz, | X| < 2x(X)e(X),
Hajnal-Juhasz, | X| < 2¥(X)s(X),
Hajnal-Juhasz, | X| < 92"
Arhangelski, | X| < 2x(OLX),
Shapirowski, | X | < 2t(X)¥(X)LX)
Hajnal-Juhasz, z(X) < 25(X)



Inequalities on special spaces
— Bell, Ginsburg, Woods.If X is T, then | X| < 2x(X)wL(X)

Assume that X is compact T5.
— P(X) = x(X).
— psw(X) = nw(X) = w(X)
— Arhangelski, t¢(X) = F(X)
— Sapirovski, z(X) < s(X)*
— Cech-Pospisil, if x(z, X) > & for each z € X, then |X| > 2".
e \(X)=wthen | X|<wor |X|=2%
Examples

e Ostasewsky’s construction
e HFDs and HFCs

2.2. Combinatorial principles.

2.2.1. CH, { and &. E.g.: If CH holds, then there is a separable, first countable,
countably compact, noncompact space.

2.2.2. Martin’s Axzioms.

e countable chain condition, ccc
e filter, generic filter,
o MA(k)

Topological reformulation: No compact Hausdorff space with the ccc can be the
union of less than 2¢ nowhere dense subsets.

— If M A(w) holds, then there is no Suslin line, i.e. every c.c.c ordered space
is separable.

— If CH holds, then There are two ccc partial orders P; and P, such that
P, x P is not ccc.

— If M A(k) holds, then every partial order of cardinality x with the ccc is
also o-centered.

MA for restricted kinds of partial orders

2.2.3. PFA and its consequences.
e proper poset, PFA
Assume that PFA holds

e PFA implies that every Ts-space of countable spread has cardinality < 2¢.
e Balogh: PFA implies that each compact space of countable tightness is
sequential.

2.3. Cardinal invariants of the reals. Cichon’s diagramm

2.4. Selected problems.
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2.4.1. S and L spaces.

e An L-space is a regular, hereditarily Lindel6f, but not separable space.
e An S-space is a regular, hereditarily separable, but not Lindelof space.
— The existence of an S-space is independent
— There is an L-space

Main problem: Is there an L-group? Is there a space X such that X? is an L-space?
2.4.2. Jakovlev spaces. Main problem: Is there a Jakovlev space?

2.4.3. Dowker spaces. A normal space whose product with the closed unit interval
I is not normal is called a Dowker space.
Main problem: Is there s DOwker space of size wq?

2.4.4. Splendid spaces. . A countably compact and locally countable T3 space is
called good. A good space is splendid if countable subsets have countable (or equiv-
alently, compact) closures.

w1 is splendid.

Main problem: Is there a good space of size continuum? Are there such spaces
of arbitrarily large cardinality?

2.4.5. Lindelof G5 spaces. Assume that X is a regular space, ¢¥(X) = L(X) = w.
Find lower and upper bounds of | X]|.

2.4.6. Nonmetrizable manifolds.

2.5. Questions. Is a normal, linearly Lindelof space Lindelof ? Is a regular D-
space Lindelof ?
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