GENERAL AND SET THEORETIC TOPOLOGY SYLLABUS

LAJOS SOUKUP

Prerequisite

- set theory: operation on sets, cardinals, ordinals, cardinal and ordinal arithmetic, cofinalities, König lemma, transfinite induction, transfinite recursion, Zorn lemma.
- **topology**: the notion of topological spaces, bases, metric spaces, subspaces, continuous images, Cartesian products,

Literature.

- Willard, Stephen; General topology, Addison-Wesley, 1970
- Engelking, Ryszard *General topology*, Sigma series in pure mathematics ; 6. Heldermann Verlag, 1989.
- Juhász,I; Cardinal functions in topology ten years later (Mathematical centre tracts; 123, 1980.
- Open Problems In Topology II, Elliott Pearl, Toronto, Canada
- Handbook of Set-theoretic Topology

1. General topology

1.1. Axioms of separation.

- T_0, T_1 , and T_2 (or Hausdorff) spaces
- T_3 (or regular) spaces
- $T_{3.5}$ (or completely regular) spaces
- T_4 (or normal) spaces

Non-trivial examples:

- a Hausdorff space which is not regular. [E, 1.5.6]
- a regular, not completely regular space [E, 1.5.9].
- a regular, not completely Hausdorff space, [W, 18G]
- Sorgenfrei line [E, 1.2.2].
- Niemytzki plane, [E, 1.2.4], [E, 1.5.10].
- (Urysohn's Lemma).] For every pair A, B of disjoint closed subsets of a normal space X there exists a continuous function $f : X \to I$ such that f(x) = 0 for $x \in A$ and f(x) = 1 for $x \in B$. [E, 1.5.11.].
- Every regular space of countable weight is normal. [E, 1.5.16.].

A topological space X is called a *hereditarily normal space*, (T_5) if every subspace of X is a normal space.

Date: January 17, 2012.

¹⁹⁹¹ Mathematics Subject Classification. 03E35.

Key words and phrases. X.

A topological space X is called a *perfectly normal space*, (T_6) if X is a normal space and every closed subset of X is a G_{δ} -set. Results:

- A subset S of a normal space X is a closed G_{δ} -set if and only if there exists a continuous function $f: X \to I$ such that $A = f^{-1}(0)$. [E, 1.5.12.].
- For every point-finite open cover $\{U_s : s \in S\}$ of a normal space X there exists an open cover $\{V_s : s \in S\}$ of X such that $\overline{V_s} \subset U_s$ for every $s \in S$. [E, 1.5.18.]
- The Vedenissoff Theorem. [E, 1.5.19.]
- Let $F = \langle 2, 3 \rangle$.
- The Alexandroff cube of weight $m \ge \omega$ is F^m .
- The Tychonoff cube of weight $m \ge \omega$ is the space I^m .
- The Alexandroff cube F^m is universal for all T_0 -spaces of weight $m \ge \omega$. [E, 2.3.26.]
- The Tychonoff cube is universal for all Tychonoff spaces of weight $m \ge \omega$. [E, 2.3.23]

1.2. Basic cardinal functions.

Definitions:

- the weight of a space, w(X)
- the character of a space, $\chi(X)$
- the density of a space, d(X)

Results:

- If $w(X) \leq m$, then for every family \mathcal{U} of open subsets of X there exists a set \mathcal{U}' such that $|\mathcal{U}'| \leq m$ and $\bigcup \mathcal{U}' = \bigcup \mathcal{U}$. [E, 1.1.14.]
- If $w(X) \leq m$ then for every base \mathcal{B} for X there exists a base $\mathcal{B}' \subset \mathcal{B}$ such that $|\mathcal{B}'| \leq m$. [E, 1.1.15.]

Inequalities:

- For every T_0 -space we have $|X| \le 2^{w(X)}$.[E, 1.5.1.]
- For every Hausdorff space X we have $|X| \leq 2^{2^{d(X)}}$ and $|X| \leq d(X)^{\chi(X)}$.[E, 1.5.3.]
- For every regular space X we have $w(X) \leq 2^{d(X)}$. [E, 1.5.7.]

1.3. Operation on topological spaces.

- Any subspace of a T_i -space is a T_i -space for $i \leq 3.5$. Normality is hereditary with respect to closed subsets. Perfect normality is a hereditary property. [E, 2.1.6.]
- (The Tietze-Urysohn Theorem). Every continuous function from a closed subspace M of a normal space X to I or R is continuously extendable over X. [E, 2.1.8]
- No separable normal space contains a closed discrete subspace of cardinality continuum. [E, 2.1.10.]
- Any Cartesian product of T_i -spaces is a T_i -space for $i \leq 3.5$. [E, 2.3.11.]
- The Sorgenfrey line K is perfectly normal, so that K is hereditarily normal as well. It turns out that the Cartesian product K x K is not normal. [E, 2.3.12.]
- (The Hewitt-Marczewski-Pondiczery Theorem.) If $d(X_S) \leq m$ for every $s \in S$ and $|S| \leq 2^m$, then $d(\prod_{s \in S} X_s) \leq m$. [E, 2.3.15.]

 $\mathbf{2}$

- A countable space with character > ω at all points. [E, 2.3.37.]
- Quotient space,
- limit of inverse systems

1.4. Compact spaces.

- A Hausdorff space X is compact if and only if every family of closed subsets of X which has the finite intersection property has non-empty intersection.
 [E, 3.1.1.]
- Every compact space is normal. [E, 3.1.9.]
- For every compact space X we have nw(X) = w(X). [E, 3.1.19.]
- For every compact space X we have $w(X) \leq |X|$. [E, 3.1.21.]
- If a compact space Y is a continuous image of a topological space X, then $w(Y) \le w(X)$. [E, 3.1.22.]
- Arhangelskii. For every infinite compact space X we have $|X| \leq 2^{\chi(X)}$. [E, 3.1.29.]
- (Alexander Subbase Theorem [1939]). Let X be a Hausdorff space and P a subbase for X; show that the space X is compact if and only if every cover of X by members of P has a finite subcover (this is the Alexander subbase theorem). [E, 3.12.2]
- The Tychonoff Theorem. The Cartesian product of compact spaces is compact. [E, 3.2.4.]
- The Stone-Weierstrass Theorem. If a ring P of continuous real-valued functions defined on a compact space X contains all constant functions, separates points and is closed with respect to uniform convergence (i.e., is a closed subset of the space Rx with the topology of uniform convergence), then P coincides with the ring of all continuous real-valued functions defined on X. [E, 3.2.21.]
- locally compact spaces
- the Alexandroff double circle. [E, 3.1.26.]
- $\omega_1 + 1$ [E, 3.1.27.]
- A pair (Y, c), where Y is a compact space and $c : X \to Y$ is a homeomorphic embedding of X in Y such that $\overline{c(X)} = Y$, is called a *compactification* of the space X.
- A topological space X has a compactification if and only if X is a Tychonoff space.
 [E, 3.5.1.]
- Every Tychonoff space X has a compactification (Y,c) such that w(Y) = w(X). [E, 3.5.2.]
- For every compactification Y of a space X we have $|Y| \le 2^{2^{d(X)}}$ and $w(Y) \le 2^{d(X)}$ [E, 3.5.3.]
- We shall now define an order relation in the family C(X). Let $c_2X \leq c_1X$ if there exists a continuous mapping $f: c_1X \to c_2X$ such that $fc_1 = c_2$;
- For every Tychonoff space X there exists in C(X) a largest element with respect to the order \leq . [E, 3.5.10.]
- The largest element in C(X) is called the Cech-Stone compactification of X or the maximal compactification of X and is denoted by βX ;

- The Alexandroff Compactification Theorem. Every non-compact locally compact space X has a compactification uX with one-point remainder. This compactification is the smallest element in C(X) with respect to the order i, its weight is equal to the weight of the space X. [E, 3.5.11.]
- If a compact space Y is a continuous image of the remainder $cX \setminus c(X)$ of a compactification cX of a locally compact space X, then the space X has a compactification $c'X \leq cX$ with the remainder homeomorphic to the space Y. [E, 3.5.13.]
- Every continuous mapping $f : X \to Z$ of a Tychonoff space X to a compact space Z is extendable to a continuous mapping $F : \beta X \to Z$. If every continuous mapping of a Tychonoff space X to a compact space is continuously extendable over a compactification aX of X, then aX is equivalent to the Cech-Stone compactification of X. [E, 3.6.1.]
- For every $m \ge \omega$ the Cech-Stone compactification of the space D(m) has cardinality 2^{2^m} and weight 2^m . [E, 3.6.11.]
- Every infinite closed set $F \subset \beta N$ contains a subset homeomorphic to βN ; in particular F has cardinality $2^{2^{\omega}}$ and weight 2^{ω} . βN does not contain convergent sequences. [E, 3.6.14.]
- We say that a topological space X is a Lindelof space, or has the Lindelof property, if X is regular and every open cover of X has a countable subcover.
- Every Lindelof space is normal.[E, 3.8.2]
- A topological space X is called a countably compact space if X is a Hausdorff space and every countable open cover of X has a finite subcover.
- A topological space is compact if and only if it is a countably compact space with the Lindelof property. [E, 3.10.1.]
- There are two countably compact Tychonoff spaces X and Y such that the Cartesian product X x Y is not countably compact. They are subspaces of βN satisfying the conditions $X \cup Y = \beta N$ and $X \cap Y = N$. [E, 3.10.19.]
- A topological space X is called pseudocompact if X is a Tychonoff space and every continuous real-valued function defined on X is bounded.
- A topological space X is called sequentially compact if X is a Hausdorff space and every sequence of points of X has a convergent subsequence.
- The Cartesian product of a countably compact space X and a sequentially compact space Y is countably compact. [E, 3.10.36.]

1.5. Metric spaces.

- Every compact metrizable space is separable. [E, 4.1.18.]
- The Hilbert cube I^{ω} is universal for all compact metrizable spaces and for all separable metrizable spaces. [E, 4.2.10]
- A family $\{A_t\}_{t\in T}$ of subsets of a topological space X is *locally finite* if for every point $x \in X$ there exists a neighbourhood U such that the set $\{t \in T : Un \cap A_t \neq \emptyset\}$ is finite. If every point $x \in X$ has a neighbourhood that intersects at most one set of a given family, than we say that the family is *discrete*.
- A family of subsets of a topological space is called σ -locally finite (σ -discrete) if it can be represented as a countable union of locally finite (discrete) families.
- The Stone Theorem. Every open cover of a metrizable space has an open refinement which is both locally finite and σ -discrete. [E, 4.4.1.]

4

- Every metrizable space has a σ -discrete base.[E, 4.4.3.]
- The Nagata-Smirnov Metrization Theorem. A topological space is metrizable if and only if it is regular and has a σ -locally finite base.[E, 4.4.7.]
- The Bing Metrization Theorem. A topological space is metrizable if and only if it is regular and has a σ -discrete base.[E, 4.4.8.]
- The Cartesian product $[J(m)]^{\omega}$ of ω copies of the hedgehog J(m) is universal for all metrizable spaces of weight $m \geq \omega$ [E, 4.4.9.]

1.6. Paracompactness.

- A topological space X is called a paracompact space if X is a Hausdorff space and every open cover of X has a locally finite open refinement.
- A topological space X is called *collectionwise normal* if X is a T_1 -space and for every discrete family $\{F_s\}_{s \in S}$ of closed subsets of X there exists a discrete family $\{V_s\}_{s \in S}$ of open subsets of X such that $F_s \subset V_s$ for every $s \in S$.
- Every compact space is paracompact.[E, 5.1.1.]
- Every Lindelof space is paracompact. [E, 5.1.2.]
- Every metrizable space is paracompact. [E, 5.1.3.]
- Every paracompact space is normal. [E, 5.1.5.]
- Every paracompact space is collectionwise normal. [E, 5.1.18.]
- ω_1 is not paracompact. Since it is countably compact and normal, it is collectionwise normal.[E, 5.1.21.]
- The Michael Theorem. Paracompactness is an invariant of closed mappings. [E, 5.1.33.]
- Let M be a subspace of a topological space X. One easily checks that the family of all sets of the form $U \cup K$, where U is an open subset of X and $K \subset X \setminus M$, is a topology on X; the set X with this new topology will be denoted by XM. [E, 5.1.22.]
- Michael'S Example. Denote by Q and P the subspaces of R consisting of all rational and all irrational numbers respectively. By virtue of Example 5.1.22 the space $X = R_Q$ is hereditarily paracompact (the space X is called the Michael line). We shall prove that the Cartesian product $X \times Y$, where Y = P, is not normal.[E, 5.1.32.]
- countably paracompact spaces
- A topological space X is normal and countably paracompact if and only if the Cartesian product $X \times I$ of X and the closed unit interval I is normal. [E, 5.2.8.]
- A Dowker space is a normal space X such that $X \times I$ is not normal.
- A sequence W_1, W_2, \ldots of covers of a topological space X is called a development for the space X if all covers W_i are open, and for every point $x \pounds \in X$ and any neighbourhood U of x there exists a natural number i such that $St(x, WI) \subset U$.
- A sequence W_1, W_2, \ldots of covers of a topological space X is called a strong development for the space X if all covers W_i are open, and for every point $x \pounds \in X$ and any neighbourhood U of x there exists a natural number i and a neighbourhood V of X such that $St(V, WI) \subset U$.
- Bing'S Metrization Criterion. A topological space is metrizable if and only if it is collectionwise normal and has a development. [E, 5.4.1.]
- The Moore Metrization Theorem. A topological space is metrizable if and only if it is a T_0 -space and has a strong development.[E, 5.4.2.]

1.7. Connected spaces.

- We say that a topological space X is connected if X cannot be represented in the form $X1 \oplus X2$, where X1 and X2 are non-empty subspaces of X.
- The quasi-component of a point x in a topological space X is the intersection of all closed- and-open subsets of X which contain the point x.
- The component of a point x in a topological space X is the union of all connected subspaces of X which contain the point x.
- A topological space X is called a continuum if X is both connected and compact.
- The intersection $\bigcap_{i \in \omega} C_i$ of a decreasing sequence $C_1 \supset C_2 \supset \ldots$ of continua is a continuum. [E, 6.1.19.]
- The component C of a point x in a topological space X is contained in the quasicomponent Q of the point x. [E, 6.1.22.]
- In a compact space X the component of a point x S X coincides with the quasicomponent of the point x. [E, 6.1.23.]
- There is a subspace of \mathbb{R}^2 in which components and quasi-components are different from each other. [E, 6.1.24. .]
- The Sierpinski Theorem. If a continuum X has a countable cover by pair- wise disjoint closed subsets $\{X_i\}_{i \in \omega}$, then at most one of the sets X_i is non-empty. [E, 6.1.27.]
- A topological space X is called hereditarily disconnected if X does not contain any connected subsets of cardinality larger than one.
- A topological space X is called zero-dimensional if X is a non-empty T_1 -space and has a base consisting of open-and-closed sets.
- A topological space X is called extremally disconnected if X is a Hausdorff space and for every open set $U \subset X$ the closure U is open in X.
- Every zero-dimensional space is hereditarily disconnected. [E, 6.2.1]
- Erdős's Example. a hereditarily disconnected separable metric space which is not zero-dimensional. Let X be the subspace of Hilbert space 77, defined in [E, Example 4.1.7] consisting of all infinite sequence of rational numbers. The space X is hereditarily disconnected. [E, 6.2.19.]
- The space βN is extremally disconnected. [E, 6.2.29]

2. Set Theoretic Topology

2.1. Cardinal functions.

• width d(X), character $\chi(X)$, density d(X), net-weight nw(X), pseudocharacter $\psi(X)$, tightness t(X), Lindelöf degree L(X), spread s(X), extent e(X), cellularity c(X), hereditary Lindelöf degree h(X), hereditary density z(X), number of open sets, number or regular open sets,

Basic results: Assume that X is T_2 .

- deGroot: $|X| \leq 2^{h(X)}$.
- Hajnal-Juhasz, $|X| \leq 2^{\chi(X)c(X)}$.
- Hajnal-Juhasz, $|X| \leq 2^{\psi(X)s(X)}$.
- Hajnal-Juhasz, $|X| < 2^{2^{s(X)}}$.
- Arhangelski, $|X| \leq 2^{\chi(X)L(X)}$.
- Shapirowski, $|X| \leq 2^{t(X)\psi(X)L(X)}$
- Hajnal-Juhasz, $z(X) < 2^{s(X)}$

6

Inequalities on special spaces

— Bell, Ginsburg, Woods. If X is T_4 , then $|X| \le 2^{\chi(X)wL(X)}$

Assume that X is compact T_2 .

$$\begin{array}{l} - & \psi(X) = \chi(X). \\ - & psw(X) = nw(X) = w(X) \\ - & \operatorname{Arhangelski}, \ t(X) = F(X) \\ - & \operatorname{Sapirovski}, \ z(X) \leq s(X)^+ \\ - & \operatorname{Cech-Pospisil}, \ \text{if} \ \chi(x,X) \geq \kappa \ \text{for each} \ x \in X, \ \text{then} \ |X| \geq 2^{\kappa}. \\ \bullet \ \chi(X) = \omega \ \text{then} \ |X| \leq \omega \ \text{or} \ |X| = 2^{\omega} \end{array}$$

Examples

- Ostasewsky's construction
- HFDs and HFCs

2.2. Combinatorial principles.

2.2.1. CH, \diamond and \clubsuit . E.g.: If CH holds, then there is a separable, first countable, countably compact, noncompact space.

2.2.2. Martin's Axioms.

- countable chain condition, ccc
- filter, generic filter,
- $MA(\kappa)$

Topological reformulation: No compact Hausdorff space with the ccc can be the union of less than 2^{ω} nowhere dense subsets.

- If $MA(\omega_1)$ holds, then there is no Suslin line, i.e. every c.c.c ordered space is separable.
- If CH holds, then There are two ccc partial orders P_1 and P_2 such that $P_1 \times P_2$ is not ccc.
- If $MA(\kappa)$ holds, then every partial order of cardinality κ with the ccc is also σ -centered.

MA for restricted kinds of partial orders

2.2.3. PFA and its consequences.

• proper poset, PFA

Assume that PFA holds

- PFA implies that every T_2 -space of countable spread has cardinality $\leq 2^{\omega}$.
- Balogh: PFA implies that each compact space of countable tightness is sequential.

2.3. Cardinal invariants of the reals. Cichon's diagramm

2.4. Selected problems.

2.4.1. S and L spaces.

- An L-space is a regular, hereditarily Lindelöf, but not separable space.
- An S-space is a regular, hereditarily separable, but not Lindelöf space.
- The existence of an S-space is independent
- There is an L-space

Main problem: Is there an L-group? Is there a space X such that X^2 is an L-space?

2.4.2. Jakovlev spaces. Main problem: Is there a Jakovlev space?

2.4.3. *Dowker spaces.* A normal space whose product with the closed unit interval I is not normal is called a Dowker space.

Main problem: Is there s DOwker space of size ω_1 ?

2.4.4. Splendid spaces. A countably compact and locally countable T_3 space is called *good*. A good space is *splendid* if countable subsets have countable (or equivalently, compact) closures.

 ω_1 is splendid.

Main problem: Is there a good space of size continuum? Are there such spaces of arbitrarily large cardinality?

2.4.5. Lindelöf G_{δ} spaces. Assume that X is a regular space, $\psi(X) = L(X) = \omega$. Find lower and upper bounds of |X|.

2.4.6. Nonmetrizable manifolds.

2.5. **Questions.** Is a normal, linearly Lindelöf space Lindelöf ? Is a regular D-space Lindelöf ?

References

- [E] Engelking, Ryszard *General topology*, Sigma series in pure mathematics ; 6. Heldermann Verlag, 1989.
- [1] Handbook of Set Theoretic Topology
- [J] Juhász,I; Cardinal functions in topology ten years later (Mathematical centre tracts ; 123, 1980.
- [W] Willard, Stephen; General topology, Addison-Wesley, 1970
- [2] Open Problems In Topology II, Elliott Pearl, Toronto, Canada

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES E-mail address: soukup@math-inst.hu URL: http://www.renyi.hu/soukup

8

En

Н

Ju

Wi

02