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Prerequisite

• set theory: operation on sets, cardinals, ordinals, cardinal and ordinal
arithmetic, cofinalities, König lemma, transfinite induction, transfinite re-
cursion, Zorn lemma.
• topology: the notion of topological spaces, bases, metric spaces, subspaces,

continuous images, Cartesian products,

Literature.

• Willard, Stephen; General topology, Addison-Wesley, 1970
• Engelking, Ryszard General topology, Sigma series in pure mathematics ;

6. Heldermann Verlag, 1989.
• Juhász,I; Cardinal functions in topology - ten years later (Mathematical

centre tracts ; 123, 1980.
• Open Problems In Topology II, Elliott Pearl, Toronto, Canada
• Handbook of Set-theoretic Topology

1. General topology

1.1. Axioms of separation.

• T0, T1, and T2 (or Hausdorff) spaces
• T3 (or regular) spaces
• T3.5 (or completely regular) spaces
• T4 (or normal) spaces

Non-trivial examples:

• a Hausdorff space which is not regular.[E, 1.5.6]
• a regular, not completely regular space [E, 1.5.9].
• a regular, not completely Hausdorff space, [W, 18G]
• Sorgenfrei line [E, 1.2.2].
• Niemytzki plane, [E, 1.2.4], [E, 1.5.10].

— (Urysohn’s Lemma).] For every pair A,B of disjoint closed subsets of a
normal space X there exists a continuous function f : X → I such that
f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B. [E, 1.5.11.].

— Every regular space of countable weight is normal. [E, 1.5.16.].

A topological space X is called a hereditarily normal space, (T5) if every subspace
of X is a normal space.
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A topological space X is called a perfectly normal space, (T6) if X is a normal
space and every closed subset of X is a Gδ-set.
Results:

— A subset S of a normal space X is a closed Gδ-set if and only if there exists
a continuous function f : X → I such that A = f−1(0). [E, 1.5.12. ].

— For every point-finite open cover {Us : s ∈ S} of a normal space X there
exists an open cover {Vs : s ∈ S} of X such that Vs ⊂ Us for every s ∈ S.
[E, 1.5.18.]

— The Vedenissoff Theorem. [E, 1.5.19.]

• Let F = 〈2, 3〉.
• The Alexandroff cube of weight m ≥ ω is Fm.
• The Tychonoff cube of weight m ≥ ω is the space Im.

— The Alexandroff cube Fm is universal for all T0-spaces of weight m ≥ ω.
[E, 2.3.26.]

— The Tychonoff cube is universal for all Tychonoff spaces of weight m ≥ ω.
[E, 2.3.23]

1.2. Basic cardinal functions.
Definitions:

• the weight of a space, w(X)
• the character of a space, χ(X)
• the density of a space, d(X)

Results:

– If w(X) ≤ m, then for every family U of open subsets of X there exists a
set U ′ such that |U ′| ≤ m and

⋃
U ′ =

⋃
U . [E, 1.1.14.]

– If w(X) ≤ m then for every base B for X there exists a base B′ ⊂ B such
that |B′| ≤ m. [E, 1.1.15.]

Inequalities:

– For every T0-space we have |X| ≤ 2w(X).[E, 1.5.1.]

– For every Hausdorff space X we have |X| ≤ 22
d(X)

and |X| ≤ d(X)χ(X).[E,
1.5.3.]

– For every regular space X we have w(X) ≤ 2d(X). [E, 1.5.7.]

1.3. Operation on topological spaces.

— Any subspace of a Ti-space is a Ti-space for i ≤ 3.5. Normality is hereditary
with respect to closed subsets. Perfect normality is a hereditary property.
[E, 2.1.6.]

— (The Tietze-Urysohn Theorem). Every continuous function from a closed
subspace M of a normal space X to I or R is continuously extendable over
X. [E, 2.1.8]

— No separable normal space contains a closed discrete subspace of cardinality
continuum. [E, 2.1.10. ]

— Any Cartesian product of Ti-spaces is a Ti-space for i ≤ 3.5. [E, 2.3.11.]
— The Sorgenfrey line K is perfectly normal, so that K is hereditarily normal

as well. It turns out that the Cartesian product K x K is not normal. [E,
2.3.12.]

— (The Hewitt-Marczewski-Pondiczery Theorem.) If d(XS) ≤ m for every
s ∈ S and |S| ≤ 2m, then d(

∏
s∈S Xs) ≤ m. [E, 2.3.15. ]
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— A countable space with character > ω at all points. [E, 2.3.37. ]

• Quotient space,
• limit of inverse systems

1.4. Compact spaces.

— A Hausdorff space X is compact if and only if every family of closed subsets of
X which has the finite intersection property has non-empty intersection.

[E, 3.1.1. ]
— Every compact space is normal. [E, 3.1.9.]
— For every compact space X we have nw(X) = w(X). [E, 3.1.19. ]
— For every compact space X we have w(X) ≤ |X|. [E, 3.1.21.]
— If a compact space Y is a continuous image of a topological space X, then w(Y ) ≤

w(X). [E, 3.1.22.]
— Arhangelskii. For every infinite compact space X we have |X| ≤ 2χ(X). [E,

3.1.29.]
— (Alexander Subbase Theorem [1939]). Let X be a Hausdorff space and P a

subbase for X; show that the space X is compact if and only if every cover of X
by members of P has a finite subcover (this is the Alexander subbase theorem).
[E, 3.12.2 ]

— The Tychonoff Theorem. The Cartesian product of compact spaces is compact.
[E, 3.2.4.]

— The Stone-Weierstrass Theorem. If a ring P of continuous real-valued functions
defined on a compact space X contains all constant functions, separates points
and is closed with respect to uniform convergence (i.e., is a closed subset of the
space Rx with the topology of uniform convergence), then P coincides with the
ring of all continuous real-valued functions defined on X. [E, 3.2.21.]

• locally compact spaces
• the Alexandroff double circle. [E, 3.1.26.]
• ω1 + 1 [E, 3.1.27.]

• A pair (Y, c), where Y is a compact space and c : X → Y is a homeomorphic

embedding of X in Y such that c(X) = Y , is called a compactification of the
space X.

— A topological space X has a compactification if and only if X is a Tychonoff space.
[E, 3.5.1. ]

— Every Tychonoff space X has a compactification (Y,c) such that w(Y) = w(X).
[E, 3.5.2. ]

— For every compactification Y of a space X we have |Y | ≤ 22
d(X)

and w(Y ) ≤ 2d(X)

[E, 3.5.3.]

• We shall now define an order relation in the family C(X). Let c2X ≤ c1X if there
exists a continuous mapping f : c1X → c2X such that fc1 = c2;

— For every Tychonoff space X there exists in C(X) a largest element with respect
to the order ≤. [E, 3.5.10.]

• The largest element in C(X) is called the Cech-Stone compactification of X or
the maximal compactification of X and is denoted by βX;
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— The Alexandroff Compactification Theorem. Every non-compact locally compact
space X has a compactification uX with one-point remainder. This compactifi-
cation is the smallest element in C(X) with respect to the order ¡, its weight is
equal to the weight of the space X. [E, 3.5.11. ]

— If a compact space Y is a continuous image of the remainder cX \ c(X) of a
compactification cX of a locally compact space X, then the space X has a com-
pactification c′X ≤ cX with the remainder homeomorphic to the space Y. [E,
3.5.13. ]

— Every continuous mapping f : X → Z of a Tychonoff space X to a compact
space Z is extendable to a continuous mapping F : βX → Z. If every continuous
mapping of a Tychonoff space X to a compact space is continuously extend-
able over a compactification aX of X, then aX is equivalent to the Cech-Stone
compactification of X. [E, 3.6.1. ]

— For every m ≥ ω the Cech-Stone compactification of the space D(m) has cardi-
nality 22

m

and weight 2m. [E, 3.6.11. ]
— Every infinite closed set F ⊂ βN contains a subset homeomorphic to βN ; in

particular F has cardinality 22
ω

and weight 2ω. βN does not contain convergent
sequences. [E, 3.6.14. ]

• We say that a topological space X is a Lindelof space, or has the Lindelof prop-
erty, if X is regular and every open cover of X has a countable subcover.

— Every Lindelof space is normal.[E, 3.8.2]

• A topological space X is called a countably compact space if X is a Hausdorff
space and every countable open cover of X has a finite subcover.

— A topological space is compact if and only if it is a countably compact space with
the Lindelof property. [E, 3.10.1.]

— There are two countably compact Tychonoff spaces X and Y such that the Carte-
sian product X x Y is not countably compact. They are subspaces of βN satis-
fying the conditions X ∪ Y = βN and X ∩ Y = N . [E, 3.10.19. ]

• A topological space X is called pseudocompact if X is a Tychonoff space and
every continuous real-valued function defined on X is bounded.

• A topological space X is called sequentially compact if X is a Hausdorff space
and every sequence of points of X has a convergent subsequence.

— The Cartesian product of a countably compact space X and a sequentially com-
pact space Y is countably compact. [E, 3.10.36.]

1.5. Metric spaces.

— Every compact metrizable space is separable. [E, 4.1.18.]
— The Hilbert cube Iω is universal for all compact metrizable spaces and for all

separable metrizable spaces. [E, 4.2.10]

• A family {At}t∈T of subsets of a topological space X is locally finite if for every
point x ∈ X there exists a neighbourhood U such that the set {t ∈ T : Un∩At 6=
∅} is finite. If every point x ∈ X has a neighbourhood that intersects at most
one set of a given family, than we say that the family is discrete.

• A family of subsets of a topological space is called σ-locally finite (σ-discrete) if
it can be represented as a countable union of locally finite (discrete) families.

— The Stone Theorem. Every open cover of a metrizable space has an open refine-
ment which is both locally finite and σ-discrete. [E, 4.4.1. ]



X 5

— Every metrizable space has a σ-discrete base.[E, 4.4.3.]
— The Nagata-Smirnov Metrization Theorem. A topological space is metrizable if

and only if it is regular and has a σ-locally finite base.[E, 4.4.7.]
— The Bing Metrization Theorem. A topological space is metrizable if and only if

it is regular and has a σ-discrete base.[E, 4.4.8.]
— The Cartesian product [J(m)]ω of ω copies of the hedgehog J(m) is universal for

all metrizable spaces of weight m ≥ ω [E, 4.4.9.]

1.6. Paracompactness.

• A topological space X is called a paracompact space if X is a Hausdorff space
and every open cover of X has a locally finite open refinement.

• A topological space X is called collectionwise normal if X is a T1-space and for
every discrete family {Fs}s∈S of closed subsets of X there exists a discrete family
{Vs}s∈S of open subsets of X such that Fs ⊂ Vs for every s ∈ S.

— Every compact space is paracompact.[E, 5.1.1. ]
— Every Lindelof space is paracompact.[E, 5.1.2. ]
— Every metrizable space is paracompact.[E, 5.1.3. ]
— Every paracompact space is normal. [E, 5.1.5. ]
— Every paracompact space is collectionwise normal.[E, 5.1.18. ]
— ω1 is not paracompact. Since it is countably compact and normal, it is collec-

tionwise normal.[E, 5.1.21.]
— The Michael Theorem. Paracompactness is an invariant of closed mappings. [E,

5.1.33. ]
— Let M be a subspace of a topological space X. One easily checks that the family

of all sets of the form U ∪K, where U is an open subset of X and K ⊂ X \M , is
a topology on X; the set X with this new topology will be denoted by XM . [E,
5.1.22.]

— Michael’S Example. Denote by Q and P the subspaces of R consisting of all
rational and all irrational numbers respectively. By virtue of Example 5.1.22 the
space X = RQ is hereditarily paracompact (the space X is called the Michael
line). We shall prove that the Cartesian product X × Y , where Y = P, is not
normal.[E, 5.1.32. ]

• countably paracompact spaces

— A topological space X is normal and countably paracompact if and only if the
Cartesian product X × I of X and the closed unit interval I is normal. [E, 5.2.8.
]

• A Dowker space is a normal space X such that X × I is not normal.

• A sequence W1,W2, ... of covers of a topological space X is called a development
for the space X if all covers Wi are open, and for every point x£ ∈ X and any
neighbourhood U of x there exists a natural number i such that St(x,WI) ⊂ U .
• A sequence W1,W2, ... of covers of a topological space X is called a strong devel-

opment for the space X if all covers Wi are open, and for every point x£ ∈ X and
any neighbourhood U of x there exists a natural number i and a neighbourhood
V of X such that St(V,WI) ⊂ U .

— Bing’S Metrization Criterion. A topological space is metrizable if and only if it
is collectionwise normal and has a development.[E, 5.4.1.]

— The Moore Metrization Theorem. A topological space is metrizable if and only
if it is a T0-space and has a strong development.[E, 5.4.2. ]
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1.7. Connected spaces.

• We say that a topological space X is connected if X cannot be represented in the
form X1⊕X2, where X1 and X2 are non-empty subspaces of X.

• The quasi-component of a point x in a topological space X is the intersection of
all closed- and-open subsets of X which contain the point x.

• The component of a point x in a topological space X is the union of all connected
subspaces of X which contain the point x.

• A topological space X is called a continuum if X is both connected and compact.

— The intersection
⋂
i∈ω Ci of a decreasing sequence C1 ⊃ C2 ⊃ . . . of continua is a

continuum. [E, 6.1.19.]
— The component C of a point x in a topological space X is contained in the quasi-

component Q of the point x. [E, 6.1.22.]
— In a compact space X the component of a point x S X coincides with the quasi-

component of the point x. [E, 6.1.23.]
— There is a subspace of R2 in which components and quasi-components are differ-

ent from each other. [E, 6.1.24. . ]
— The Sierpinski Theorem. If a continuum X has a countable cover by pair- wise

disjoint closed subsets {Xi}i∈ω, then at most one of the sets Xi is non-empty.
[E, 6.1.27.]

• A topological space X is called hereditarily disconnected if X does not contain
any connected subsets of cardinality larger than one.

• A topological space X is called zero-dimensional if X is a non-empty T1-space
and has a base consisting of open-and-closed sets.

• A topological space X is called extremally disconnected if X is a Hausdorff space
and for every open set U ⊂ X the closure U is open in X.

— Every zero-dimensional space is hereditarily disconnected. [E, 6.2.1]
— Erdős’s Example. a hereditarily disconnected separable metric space which is

not zero-dimensional . Let X be the subspace of Hilbert space 77, defined in [E,
Example 4.1.7] consisting of all infinite sequence of rational numbers. The space
X is hereditarily disconnected. [E, 6.2.19.]

— The space βN is extremally disconnected. [E, 6.2.29]

2. Set Theoretic Topology

2.1. Cardinal functions.

• width d(X), character χ(X), density d(X), net-weight nw(X), pseudo-
character ψ(X), tightness t(X), Lindelöf degree L(X), spread s(X), extent
e(X), cellularity c(X), hereditary Lindelöf degree h(X), hereditary density
z(X), number of open sets, number or regular open sets,

Basic results: Assume that X is T2.

— deGroot: |X| ≤ 2h(X).
— Hajnal-Juhasz, |X| ≤ 2χ(X)c(X).
— Hajnal-Juhasz, |X| ≤ 2ψ(X)s(X).

— Hajnal-Juhasz, |X| ≤ 22
s(X)

.
— Arhangelski, |X| ≤ 2χ(X)L(X).
— Shapirowski, |X| ≤ 2t(X)ψ(X)L(X)

— Hajnal-Juhasz, z(X) ≤ 2s(X)
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Inequalities on special spaces

— Bell, Ginsburg, Woods.If X is T4, then |X| ≤ 2χ(X)wL(X)

Assume that X is compact T2.

— ψ(X) = χ(X).
— psw(X) = nw(X) = w(X)
— Arhangelski, t(X) = F (X)
— Sapirovski, z(X) ≤ s(X)+

— Cech-Pospisil, if χ(x,X) ≥ κ for each x ∈ X, then |X| ≥ 2κ.
• χ(X) = ω then |X| ≤ ω or |X| = 2ω

Examples

• Ostasewsky’s construction
• HFDs and HFCs

2.2. Combinatorial principles.

2.2.1. CH, ♦ and ♣. E.g.: If CH holds, then there is a separable, first countable,
countably compact, noncompact space.

2.2.2. Martin’s Axioms.

• countable chain condition, ccc
• filter, generic filter,
• MA(κ)

Topological reformulation: No compact Hausdorff space with the ccc can be the
union of less than 2ω nowhere dense subsets.

— If MA(ω1) holds, then there is no Suslin line, i.e. every c.c.c ordered space
is separable.

— If CH holds, then There are two ccc partial orders P1 and P2 such that
P1 × P2 is not ccc.

— If MA(κ) holds, then every partial order of cardinality κ with the ccc is
also σ-centered.

MA for restricted kinds of partial orders

2.2.3. PFA and its consequences.

• proper poset, PFA

Assume that PFA holds

• PFA implies that every T2-space of countable spread has cardinality ≤ 2ω.
• Balogh: PFA implies that each compact space of countable tightness is

sequential.

2.3. Cardinal invariants of the reals. Cichon’s diagramm

2.4. Selected problems.
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2.4.1. S and L spaces.

• An L-space is a regular, hereditarily Lindelöf, but not separable space.
• An S-space is a regular, hereditarily separable, but not Lindelöf space.

— The existence of an S-space is independent
— There is an L-space

Main problem: Is there an L-group? Is there a space X such that X2 is an L-space?

2.4.2. Jakovlev spaces. Main problem: Is there a Jakovlev space?

2.4.3. Dowker spaces. A normal space whose product with the closed unit interval
I is not normal is called a Dowker space.

Main problem: Is there s DOwker space of size ω1?

2.4.4. Splendid spaces. . A countably compact and locally countable T3 space is
called good. A good space is splendid if countable subsets have countable (or equiv-
alently, compact) closures.
ω1 is splendid.
Main problem: Is there a good space of size continuum? Are there such spaces

of arbitrarily large cardinality?

2.4.5. Lindelöf Gδ spaces. Assume that X is a regular space, ψ(X) = L(X) = ω.
Find lower and upper bounds of |X|.

2.4.6. Nonmetrizable manifolds.

2.5. Questions. Is a normal, linearly Lindelöf space Lindelöf ? Is a regular D-
space Lindelöf ?
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